【初心者向け】AI(人工知能)の利用シーン、AIを作るのに必要な3つのコト

2019年になって、一挙にいろいろなAI(人工知能)を活用したサービスがリリースされています。

フィンテック系サービスもあれば、住宅系のサービスもあります。健康系、お遊び系、エンタメ系。Iotを活用したサービスなども増えていますし、2019年の段階では、画像をディープランニングしていくAIサービスなども登場しています。

AINOW(エーアイナウ)というwebメディアは、AIの専門webメディアなのですが、ここでは、人工知能サービス業界マップ2019年版などを公開しています。

人工知能サービス業界マップ2019年最新版
https://ainow.ai/ai_service_map2019/

こんなに盛り上がってきているAIですが、そもそも、どんなことに使われているのか、理解しにくいという話を聞きます。たしかに、サービス提供側は理解できても、実際に、目で見るAIで多いのは、チャットボットくらいですからね。

ということで、今回は、AI初心者向けに、AIの利用シーンや、AIを理解するうえで重要なAI(人工知能)を作る際に必要な3つのことをご紹介します。

AIとは

AIは、人工知能です。わかりやすく言えば、AIは、システム自体が判断をしてくれるシステムです。

判断とは何か。具体例をあげて解説します。

AIで一番わかりやすい例は、写真を見て、その写真が何を示すかを判断するシステムなので、それをもとに解説します。

AIに猫と車と2枚の画像を見せます。

猫がa.jpg、車がb.jpgとします。

AIは、それぞれの画像が、猫である、車であるということを認識します。そして、a.jpgが猫、b.jpgが車と判断します。そして、それをプログラムとして伝えてくれます。

人間ではなく、システムで、こういうような判断をしてくれるシステムが、AIなんです。
もちろん、その判断がいい加減では困るので、精度が高くないと困ります。

それゆえ、AIは、定義の学習をしていきます。

一般的に、AIに、これが猫だということを覚えさせる学習工程をディープランニングと呼んでいます。

学習をさせるには、たくさんの画像を見せ、その画像が猫である、猫ではないという定義をしておいて、それを理解させる必要があります。

それが、AIの学習になります。

つまり、AIは、たくさんのサンプルをもとに、判断をしていくシステムなのです。

まずは、ここを把握してください。

AIの理解ポイント
AIは、学習をしていく。そのためにたくさんのデータと定義をしめす必要がある

AIの利用シーンはどんなものがある?

上記のように、AIは、システムが判断をしてくれます。

それゆえ、AIの利用シーンは、未来的には、高度な判断ができるようになってきます。ターミネーターとかの映画を見ていると、わかりやすいですね。あいつは敵だから、倒してもいい!とか、ターミネーターのロボットが判断をしています。

ですが、もちろん、これは、今、あるものではありません。

では、2019年で、AIを使ったサービス、AIの利用シーンはどんなものになるのでしょうか。いくつか具体例で、これも解説します。

AI×勉強 アタマプラス

アタマプラス

Home

教育系のAIサービスでは、すごいな!って思っているサービスです。

何をしてくれるサービスかというと、

AIによって、その人が、何がわかっていて、何を学ばないと、次の学習ができないかを判断してくれるサービスです。

具体的に解説すると、

台形の面積を求める数学で、つまってしまった中学生がいたとします。

そのとき、その中学生が、面積の求め方を理解しているかどうかを、いくつかの問題を出すことで、スキャンして、その答えを出していくサービスなんです。

要は、カリキュラムのパーソナライズ化をAIという技術で可能にしているのです。

AI×投資 ウェルスナビ(WealthNavi)

ウェルスナビ(WealthNavi)
https://www.wealthnavi.com

ウェルスナビ(WealthNavi)は、AIで、全自動。投資先を見つけてきてくれて、投資のお金を配分してくれるサービスなんです。

いわゆる、ロボット投資というものですね。

全自動で見つけてくれるというのが本当にいいんですよね。

実際、投資の素人、資産運用を始めたばかりだと、いいところ、国内株式投資か、外貨預金。それを、自動でやってくれるんです。

ちなみに、私もウェルスナビ(WealthNavi)にて投資の運用をやってみています。

10万円だけ、投資してみたのですが、2週間くらいで、500円くらい増えました。

定期預金で、500円増やすのに、何年かかるのでしょうか・・・

そこから考えると、たしかに、AIでの投資サービスはすごいですよね。

*リスクがあるのは知っていてやってくださいね。

実際にやっている人の記事もみつけたので、以下にご紹介しておきます。

出典:AERA
最低1000円からAIで全自動「ロボット投資」 本当に儲かるのか?
https://dot.asahi.com/aera/2019051700024.html

このロボット投資系サービスは、基本的に、ユーザーの投資に求めるものの質問をして、そこから、ユーザーの投資したい傾向を割り出し、そこから、投資先を見つけていくという手法です。

AIを作るのに必要な3つのコト

これまでの記事で、AIのイメージはついたと思います。

さて、そうなってくると、AI技術を使って、AIサービスを作るのには、何が必要なのかのイメージがついているかもしれません。

ですが、ここは具体的に、3つ紹介していきます!

AIを作るには、たくさんのデータをまわせる技術が必要

AIを作るには、判断の元となるデータが必要です。

これが、Aだ、これは、Bだ、という定義のデータを大量に、AIに学習(ディープランニング)をしてもらう必要があります。

当然ですが、この学習のためのデータが必要なわけです。

そのデータは、ローカルのパソコンにあればいいですが、多くは、インターネット環境で収集してくるものになります。

それゆえ、大量のデータを保管、データ収集する技術も必要です。

具体的には、

  • 大量データをさばける構造化設計
  • たくさんのトラフィックをさばけるインフラ、ネットワーク技術
  • 集計技術
  • グルーピング技術

といった技術が必要なんですよね。

AIが学べるデータ

AIを賢くさせる学習は、「機械学習」と呼ばれます。

そして、この機械学習を行うためにデータが必要になります。

いわゆる、ビッグデータですね。

ちなみに、この機械学習に必要なデータはどのくらい必要なのか、というのが話題になりますが、ここの定義はありません。

あればあるほど、AIの精度があがるためです。

ただ、データが多くなければAIを作れないわけではないです。

データが少なくても、AIは作れます。あとから学んでいけばいいからです。

ただ、、、精度が悪いので、運用が必要です。

毎日、毎日動かしたり、運用をしていくことで、AIが覚えていくわけです。ちなみに、よくあるFAQタイプのチャットボットだと、だいたい1か月くらいで、ある程度、まともなAIになってきます。

もちろん、多少は最初にデータを登録しておく必要はありますが。

最後に!AIの「学習済みモデル」

実は、ここまで書いてこれかよ!って話かもしれませんが、すでに、AI的な機械学習ができるツールは開発されています。

以下の機械学習ツールが、その例です。

  1. Azure ML
  2. Amazon Machine Learning
  3. Google Prediction API

上から、マイクロソフト、アマゾン、Googleのサービスです。

これらの機械学習ツールをもとに、作成したAIの「学習済みモデル」をWebにアップロードすれば、APIを用いて、AIのサービスを立ち上げることも可能です。

結果的に、上記を活用する際に、プログラミングの技術が必要です。

ちなみに機械学習ツールはこのほかにもこんなにあります。

  • Dialogflow
  • Orange
  • TensorFlow
  • Chainer
  • Caffe

などなど

このようにwebエンジニアで優秀な方で、未来志向の方は、AIのこういった技術などに興味を持つのは、webとAIが親和性が高いからなんです。

まとめ:AIをざっくり理解しよう!

言葉としてのAIは理解できると思いますが、実際、考えてみると、どんなものか。ばっくりでもいいので、自分の骨肉にできるように、考えてみてください。

  • AIは、判断をしてくれるシステム
  • AIのシステムは、データを大量に教え込まないと判断の精度が悪い
  • AIを作るには、ビックデータが必要ではないが、あった方がサービス精度はよい
  • AIを作るには、データを大量に扱える技術が必要
  • AIの機械学習ツールはたくさんある
  • AIと、webプログラミングの親和性は高い
  • AIは、身近なサービスになりつつある